

	DPP – 7 (Current Electricity)	
Video Solution on Website :-	https://physicsaholics.com/home/courseDetails/98	
Video Solution on YouTube:-	https://youtu.be/Cw_eR0ENQPU	
Written Solution on Website:-	https://physicsaholics.com/note/notesDetalis/53	
Q 1. If following meters are resistance of the devic (a)An ammeter of rang (c)An ammeter of rang	e prepared with help of identical galvanometer. In which of the case e will be largest? ge 10 A (b)A voltmeter of range 5 V ge 5 A (d)A voltmeter of range 10 V	
Q 2. A bulb rated 200 W, 20 bulb in one second is (a) 3.125×10^{17} (c) 3.125×10^{18}	00 V is used at 100 V. Then the number of electrons passed through (b) Zero (d) 6.25×10^{18}	
Q 3. ' n' identical light bulbs supply are joined in se consumed by one bulb (a) n P (b) P	s, each designed to draw power of P watts from a certain voltage ries and that combination is connected across that supply. The power (in watts) will be (c) P/n (d) P/n ²	
Q 4. An ammeter A of finite potentiometer P is joir reading is V ₀ . P is now now is I and the voltme	e resistance and a resistor R are joined in series to an ideal cell C. A ned in parallel to R. The ammeter reading is I_0 & the potentiometer replaced by a voltmeter of finite resistance. The ammeter reading eter reading is V.	

- $(a) I > I_0, V > V_0$ $(c) I = I_0, V < V_0$ $(d) I < I_0, V < V_0.$
- Q 5. In a potentiometer arrangement E_1 is the cell establishing current in primary circuit E_2 is the cell to be measured AB, is the potentiometer wire and G is a galvanometer. Which of the following are the essential condition for balance to be obtained
 - (a) The emf of E_1 must be greater than the emf of E_2

(b) Either the positive terminals of both E_1 and E_2 or the negative terminals of both E_1 and E_2 must be joined to one end of potentiometer wire

(c) The positive terminals of E_1 and E_2 must be joined to one end of potentiometer wire (d) The resistance of G must be less than the resistance of AB

Q 6. In a potentiometer wire experiment the emf of a battery in the primary circuit is 20 V and its internal resistance is 5Ω . There is a resistance box in series with the battery and the potentiometer wire, whose resistance can be varied from 120Ω to 170Ω . Resistance of the

potentiometer wire is 75Ω . The following potential difference can be measured using this potentiometer (c) 7V

(a) 5V

- (d) 8 V
- Q 7. An ammeter and a voltmeter are joined in series to a cell. Their readings are A and V respectively. If a resistance is now joined in parallel with the voltmeter,
 - (a) both A and V will increase
 - (b) both A and V will decrease
 - (c) A will decrease, V will increase

(b) 6V

- (d) A will increase, V will decrease
- Q 8. Three ammeters A, B and C of resistances R_A, R_B and R_C respectively are joined as shown. When some potential difference is applied across the terminals T_1 and T_2 , their readings are I_A , I_B and I_c respectively.

In the potentiometer arrangement shown, the driving cell D has emf ξ and internal resistance Q 9. r. The cell C, whose emf is to be measured, has emf $\xi/2$ and internal resistance 2r. The potentiometer wire is 100-cm long. If balance is obtained, the length AJ = /.

- (a) l = 50 cm.
- (b) l > 50 cm.
- (c) Balance will be obtained only if resistance of AB is > r.
- (d) Balance cannot be obtained.
- Q 10. Two heaters designed for the same voltage V have different power ratings. When connected individually across a source of voltage V, they produce H amount of heat each in times t_1 and t_2 respectively. When used together across the same source, they produce H amount of heat in time t.
 - (a) If they are in series, $t = t_1 + t_2$.
 - (b) If they are in series, $t = 2(t_1 + t_2)$.

(c) If they are in parallel, t =
$$\frac{t_1t_2}{(t_1+t_2)}$$
.
(d) If they are in parallel, t = $\frac{t_1t_2}{2(t_1+t_2)}$

Q 11. If X, Y, and Z in figure are identical lamps, which of the following changes to the brightnesses of the lamps occur when switch S is closed?

- (a) X stays the same, Y decreases
- (b) X increases, Y decreases
- (c) X increases, Y stays the same
- (d) X decreases, Y increases
- Q 12. When a galvanometer is shunted with a 40hm resistance, the deflection is reduced to one-fifth. If the galvanometer is further shunted with a 20hm wire, the deflection will be (The main current remains the same) -
 - (a) (8/13) of the original deflection only
 - (b) (5/13) of the original deflection
 - (c) (3/4) of the deflection when shunted with 4 ohm only
 - (d) (5/13) of the deflection when shunted with 4 ohm only
- Q 13. In the arrangement shown in figure when the switch S2 is open, the galvanometer shows no deflection for I = L/2. When the switch S2 is closed, the galvanometer shows no deflection for I = 5L/12. The internal resistance (r) of 6 V cell, and the emf E of the other battery are

(a) 3Ω, 8V (c) 2 Ω, 24V (b) 2 Ω, 12V (d) 3 Ω, 12V

Q 14. In the fig below the bulbs are identical, which bulb(s), light(s) most brightly ?

(a) 1 only

(b) 4 only

(c) 2 and 3

(d) 1 and 5

Q 15. Three bulbs B_1 , B_2 and B_3 are connected to the mains as shown in figure. How will the incandescence of the bulb B_1 be affected, if one of the bulbs B_2 or B_3 is disconnected from the circuit?

(a) no change in the incandescence

(b) bulb B_1 will become brighter

(c) bulb B_1 will become less brighter

(d) the bulb B_1 may become brighter or dimmer depending upon wattage of the bulb which is disconnected.

Q 16. A meter bridge is set-up as shown, to determine an unknown resistance 'X' using a standard 10 ohm resistor. The galvanometer show null point when tapping-key is at 52 cm mark. The end-corrections are 1 cm and 2 cm respectively for the ends A and B. The determine value of 'X' is-

10Ω ΜΜ X 6 Ъ 0 6 $(\mathbf{\hat{f}})$ B (a) 10.2 ohm (b) 10.6 ohm (d) 11.1 ohm (c) 10.8 ohm

Answer Key

Q.1 d	Q.2 c	Q.3 d	Q.4 b	Q.5 a, b
Q.6 a, b, c	Q.7 d	Q.8 a, b, d	Q.9 b, c	Q.10 a, c
Q.11 b	Q.12 d	Q.13 b	Q.14 d	Q.15 c
Q.16 b				
				\bigcirc
			1000	R
			200	CS
		AD		Be
		26	006	0
			RIC	
	R	GG		
$\left(\mathcal{O} \right)$) (D)			
5				
	DIN			
	12			